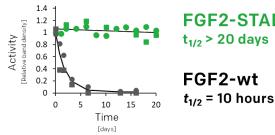
FGF2-STAB® MEAT


Enantis

designed for cultured meat media

- Improved human fibroblast growth factor 2
- Induces cell proliferation
- Maintains cells in undifferentiated state
- Essential for stem cell and cultured meat media
- Patented molecule (WO2017089016A1)
- Called FGF2-G3 or FGF2-STAB in literature

50-times longer half-life than FGF2

Measured by activation of ERK in human ESC CCTL14 culture

FGF2-STAB® $t_{1/2} > 20 \text{ days}$

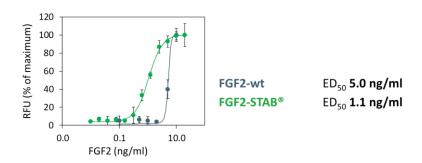
Engineered protein with improved stability and longevity

FGF2-wt is intrinsically unstable and requires continuous addition to the media

Competitive advantage

- Longer half-life (50-times)
- Much lower dosage needed (up to 20-times)
- Fully retained biological activity
- No need for stabilizing additives
- Animal-free product

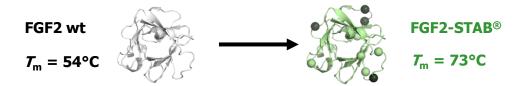
Possibility of reformulation according to customer's specs and regulations


Open to agreements for supply / collaborations / licenses

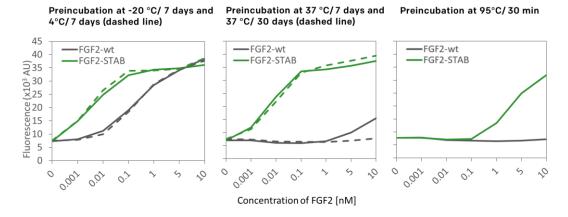
enantis@enantis.com +420 511 205 287 www.enantis.com

Lower dosage required*

Measured by NIH/3T3 fibroblast cell proliferation



^{*} Up to 20-times lower dosage required if used in B8 media formulation (Kuo et al., 2020)


Temperature stability enhanced by 19°C

Measured by circular dichroism spectroscopy

Enhanced stability in cell proliferation assay

Tested in BAF3 cells expressing FGFR2c receptor

Literature

Dvorak P, Bednar D, Vanacek P, et al. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng. 2018;115(4):850-862. doi:10.1002/bit.26531

Koledova Z, Sumbal J, Rabata A, et al. Fibroblast Growth Factor 2 Protein Stability Provides Decreased Dependence on Heparin for Induction of FGFR Signaling and Alters ERK Signaling Dynamics. Front Cell Dev Biol. 2019;7:331. Published 2019 Dec 12. doi:10.3389/fcell.2019.00331

Kuo HH, Gao X, DeKeyser JM, et al. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports. 2020;14(2):256-270. doi:10.1016/j.stemcr.2019.12.007

enantis@enantis.com +420 511 205 287 www.enantis.com